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Abstract  

Time series are essential for anticipating various claims payment applications. For insurance firms to prevent 

significant losses brought on by potential future claims, the future values of predicted claims are crucial. 

Additionally, the ideal parameter is chosen artificially. By using a genuine application, the proposed model’s utility 

is demonstrated. Additionally, the ideal parameter is chosen artificially. By using a genuine application, the 

proposed model utility is demonstrated. Also, the single exponential smoothing model is used for prediction under 

the Holt-Winters’ additive algorithm.  
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1.Introduction 

The autoregressive integrated moving average (ARIMA) models have beee developed by Box and Jenkins (1970) for 

prediction of time series data. The Box-Jenkins method is based on inputs from a specific time series and is used to forecast 

data. It can perform forecasting using a variety of time series data analyses. This methodology evaluates discrepancies between 

time series data points to determine findings. In order to create future projections, it is possible to discover patterns utilising 

the autoregressive models, moving averages models, and seasonal differencing. The primary implementation of Box-Jenkins 

approach uses ARIMA models. Sometimes people will use the two names for these cars interchangeably. For the time series 

analysis with forecasting and control, see Box et al. (2015).  

On the other hand, research based on ARIMA models became widely published in the actuarial literature, see Cummins and 

Griepentrog (1985) for forecasting automobile insurance paid claim costs using econometric and ARIMA models, Jang et al. 

(1991) for analysing some medical insurance program for employees by ARIMA model, Venezian and Leng (2006) for some 

applications of spectral and ARIMA analysis to combined-ratio patterns, Mohammadi and Rich (2013) for the dynamics of 

unemployment insurance claims with an application of ARIMA model, Hafiz et al. (2021) for projecting insurance penetration 

rate in Nigeria, and Kumar et al. (2020) for forecasting motor insurance claim amount using ARIMA model. In the area of 

applied mathematical modelling, the autoregressive (AR) and ARIMA models have drawn the attention of numerous authors. 

For example, forecasting the electricity price (Jakaša et al. (2011)), modelling and forecasting of area, production, yield and 

total seeds of rice and wheat (Sahu et al. (2015)), producing wheat output predictions (Iqbal et al. (2016)), forecasting the oil 
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seeds prices in India (Darekar and Reddy (2017)), predicting India’s wheat production (Nath et al. (2019)), identification of 

paddy crop phenological parameters (Palakuru et al. (2019)), and Shrahili et al. (2021) for modeling the negatively skewed 

insurance claim-size asymmetric data using a new Chen model and the AR model. 

The future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that 

may be produced from future claims. Recently, Shrahili et al. (2021) introduced a flexible claim-size Chen density for 

modeling asymmetric data (negative and positive) with different types of kurtosis (mesokurtic, leptokurtic and platykurtic). 

Since the insurance-claims data (Charpentier (2014)) are a quarterly time series dataset, Shrahili et al. (2021) analyzed these 

data using the AR model. A useful comparison is provided between the results of the Chen model and the autoregressive 

regression model. Many Chen densities were studied, see, for example, Ibrahim et al. (2022) for a novel test statistic for right 

censored validity under a new Chen extension with some applications in reliability and medicine, Yousof et al. (2022) for 

another Chen extension with characterizations and different estimation methods, and Korkmaz et al. (2022) for a new unit-

Chen model with associated quantile regression. 

Following Shrahili et al. (2021), Mohamed et al. (2022) define a new size-of-loss synthetic autoregressive model for the left 

skewed insurance claims datasets. In order to choose the optimal model, the technique essentially involves examining the 

insurance claims using all feasible ARIMA models. The suitability for the insurance claims will therefore dictate this choice. 

Statistics are used to evaluate the parameter model’s importance. It is advisable to choose a model with fewer significant 

parameters. Finding out if the time series is stationary and whether there is any substantial seasonality that has to be modelled 

is the first stage in creating a specific Box-Jenkins model for the time series insurance claims. The autoregressive model is 

selected following the identification of the Box-Jenkins model. The synthetic autoregressive model is used to model the 

insurance claims. Through a few simulation studies, its suitability is evaluated, the artificial means are used to determine the 

ideal parameter. 

In some cases, we need to make quick, short-term and low-cost forecasts. In those cases, the Box-Jenkins methodology is not 

the optimal choice although it may be the best under the regular cases. so, some other models such as the single exponential 

smoothing (SES) model can be recommended for forecasting. The SES model was proposedby Brown (1959), Holt (1957) 

and Winters (1960). Forecasts made with the aid of SES techniques are weighted averages of earlier observations, with the 

weights degrading exponentially with time. In other words, the associated weight is higher when the observation is more 

recent. This framework quickly and accurately creates projections for a variety of time series, which is a significant benefit 

for applications in industry. 

There are two versions of Holt-Winters’ method, and the seasonal component in each one is different. When seasonal 

fluctuations are essentially constant throughout the series, the additive method is recommended; when they change 

proportionally to the level of the series, the multiplicative method is favoured. The seasonal component is stated in absolute 

terms in the scale of the observed series using the additive approach, and the level equation adjusts the series for the season 

by deducting the seasonal component. The seasonal component will roughly equal zero within each year. 

In this paper, the SES model is considered for modeling and forecasting historical insurance real data used for prediction under 

the Holt-Winters’ additive algorithm. The SES model is can be compared with the size-of-loss synthetic autoregressive model 

(SAR) firstly proposed by Mohamed et al. (2022) under the sum squares of errors (SSE) criteria. The integrity of the model 

residues is one of the most important indicators of the integrity of the model, so, for the two models, we numerically and 

graphically analyze the residuals. The exponential window function is a general method for smoothing time series data known 

as exponential smoothing. In contrast to the ordinary moving average, which weights previous data equally, exponential 

functions use weights that decrease exponentially with time. It is a simple process that can be understood and used right away 

to make a decision based on the user’s existing assumptions, like seasonality. Time-series data analysis frequently employs 

exponential smoothing. The SES and moving average approaches are equivalent to first-order infinite-impulse response filters 

and finite impulse response filters, respectively, with equal weighting factors in the signal processing literature. Non-causal 

(symmetric) filters are frequently used, and the exponential window function is widely used in this way. 
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By extending straightforward exponential smoothing, Holt (1957) made it possible to forecast data that had a trend. A forecast 

equation and two smoothing equations ,one for the level and one for the trend, are used in this approach. Indefinitely into the 

future, the forecasts produced by Holt’s linear technique show a steady trend (growing or decreasing). According to empirical 

data, these approaches frequently overpredict, especially for forecast horizons that are longer (see Holt (1957) and Hyndman 

and Athanasopoulos (2018)). 

 

The rest of the paper is organized as follows: Section 2 presents SES model along with its main statistical results. An 

assessment, comparison and application to historical insurance real data under the Holt-Winters’ additive algorithm are 

addressed in Section 3. Finally, some concluding remakes are offered in Section 4. 

2. The SES model 

For time series data, short-term forecasts can be created using exponential smoothing. If your time series data can be accurately 

predicted by an additive model with constant level and no seasonality, making short-term projections is possible using 

straightforward exponential smoothing. This approach is appropriate for predicting data without a distinct trend or seasonal 

pattern. One method for determining the level at the present time point is the straightforward SES method. For the estimate of 

the level at the current time pointThe alpha parameter governs the SES model. It is worth mentioning that, alpha’s value ranges 

from 0 to 1. When forecasting future values, alpha values near to 0 indicate that the most recent observations are not given 

much weight and alpha values near to 1 indicate that the most recent observations are given much weight. It can make sense 

to give more weight to recent observations compared to older observations. The idea behind straightforward exponential 

smoothing is just this. 

 

According to the naive technique, all future predictions are equal to the most recent value of the series seen where 

 �̂�𝑇+ℎ|𝑇 = 𝑦𝑇|ℎ = 1,2, . . ., (1) 

all future predictions made using the average approach equal a simple average of the observed data, where 

 �̂�𝑇+ℎ|𝑇 =
1

𝑇
(𝑦1 + 𝑦2+. . . +𝑦𝑇)|ℎ = 1,2, . . ., (2) 

as a result, the average approach bases its forecasting on the premise that all observations are equally important and should be 

given similar weights. We frequently seek a middle ground between these two extremes. For instance, it might make sense to 

give more weight to current findings than to those made in the distant past. The idea behind straightforward exponential 

smoothing is just this. According to the SES model, The forecast at time 𝑇 + 1 is equal to a weighted average between the 

most recent observation 𝑦𝑇 and the previous forecast �̂�𝑇|𝑇−1 where 

 �̂�𝑇+1|𝑇 = 𝛼𝑦𝑇 + (1 + 𝛼)�̂�𝑇|𝑇−1|𝑇 = 1,2, . . ., (3) 

where 0 ≤ 𝛼 ≤ 1 is the smoothing parameter. The fitted values can be expressed similarly as 

 �̂�𝑡+1|𝑡 = 𝛼𝑦𝑡 + (1 + 𝛼)�̂�𝑡|𝑡−1|𝑇 = 1,2, . . ., (4) 

Since the process must begin somewhere, we’ll use 𝐼0 to represent the first fitted value (which we will have to estimate) at 

time 1. Then, 

 �̂�2|1 = 𝛼𝑦1 + (1 + 𝛼)𝐼0, (5) 

 

 �̂�3|2 = 𝛼𝑦2 + (1 + 𝛼)�̂�2|1, (6) 
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 �̂�𝑇|𝑇−1 = 𝛼𝑦𝑇−1 + (1 + 𝛼)�̂�𝑇−1|𝑇−2 (7) 

 

 �̂�𝑇+1|𝑇 = 𝛼𝑦𝑇 + (1 + 𝛼)�̂�𝑇|𝑇−1 (8) 

For large 𝑇, the term (1 + 𝛼)𝐼0 shrinks. Consequently, the prediction model is the same using the weighted average version 

as 

 �̂�𝑇+1|𝑇 = 𝛼𝑦𝑇 + 𝛼(1 + 𝛼)𝑦𝑇−1 + 𝛼(1 + 𝛼)2𝑦𝑇−2+. . . |0 ≤ 𝛼 ≤ 1. (9) 

The weights 𝛼, 𝛼(1 + 𝛼), 𝛼(1 + 𝛼)2, . .. are exponentially decreasing and this the weighting logic of the SES model. The 

prediction error can be expressed by 

 𝑒𝑡 = 𝑦𝑇 − �̂�𝑡|𝑡−1. (10) 

The selection of the smoothing parameter 𝛼 and the initial value 𝐼0 is a prerequisite for applying any exponential smoothing 

approach. In particular, for simple exponential smoothing, we need to select the values of  𝛼 and  𝐼0 . Once we are aware of 

these numbers, we can generate all forecasts using the data. There are typically multiple smoothing parameters and multiple 

starting components available for the algorithms that follow. Consequently, we identify the unknown parameter values and 

the starting points that minimize the SSE. This includes a non-linear minimization problem, and we need to employ an 

optimization tool to solve it, unlike the regression situation where we have formulas that provide the values of the regression 

coefficients that minimize the SSE. 

3.  Application and forecasting under the Holt-Winters’ additive algorithm 

A formal request for compensation for damages covered by your insurance policy is known as an insurance claim. An insurance 

policy is a contract between you and your insurer. You are required to pay a set premium. In return, the insurance company 

provides financial protection against losses in accordance with the conditions of the policy. A claim must be made after the 

occurrence of the insured event. The intent is to inform the insurance provider that the occurrence of the event for which you 

selected coverage has occurred and that the provider should pay the claim amount. 

A financial safety net is provided by an insurance claim. Unexpected costs from things like accidents, medical emergencies, 

and life’s uncertainties can have a severe negative impact on your finances. Such terrible situations may be relieved by 

insurance claims. A formal request for coverage or payment for a covered loss or other policy event made by a policyholder 

to an insurance company is known as an insurance claim. The insurance provider confirms the claim (or denies the claim). If 

it is accepted, the insurance provider will pay the insured or a recognised interested party on their behalf. Given the importance 

of studying, analyzing, modeling and evaluating insurance claims for companies and insured individuals, we found ourselves 

motivated to present this application. 

Time series data can display many different patterns, hence it is frequently useful to divide a time series into numerous 

components, each of which represents a different type of underlying pattern. Typically, we combine the trend and cycle into a 

single trend-cycle component when we dissect a time series into its constituent parts (sometimes called the trend for 

simplicity). Thus we think of a time series as comprising three components: a trend-cycle component, a seasonal component, 

and a remainder component (containing anything else in the time series). The seasonal component is presumed to reoccur 

every year by traditional decomposition techniques. This is a valid assumption for many series, but it is incorrect for some 

longer series.  

For instance, as the use of air conditioning has increased, patterns of electricity demand have evolved. In particular, the 

seasonal consumption pattern from a few decades ago had its peak demand in many regions during the winter (due to heating), 

whereas the current seasonal pattern has its peak demand during the summer (due to air conditioning). These seasonal changes 

over time cannot be captured by the traditional decomposition techniques. On occasion, the values of the time series in a select 
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few periods might be particularly out of the ordinary. For instance, a labour disagreement may have an impact on the monthly 

air passenger flow, causing the traffic during the conflict to be different from typical. These kinds of odd values are not resistant 

to the classical procedure. 

The temporal growth of claims through time for each appropriate exposure (or origin) period is frequently shown in the 

historical insurance actual data in the form of a triangle presentation. The year the insurance policy was purchased or the time 

period during which the loss occurred may be regarded as the exposure period. It is obvious that the origin period need not be 

annual. For instance, it may be monthly or quarterly origin periods. The development period of an origin period is known as 

the "claim age" or "claim lag". Data from separate insurance is frequently combined to represent uniform company lines, 

division levels, or risks. 

In this article, we examine a U.K. Motor Non-Comprehensive account’s insurance claims payment. For convenience, we set 

the origin period from 2007 to 2013 (see Charpentier (2014) and Shrahili et al. (2021)). The insurance claims payment data 

frame displays the claims data in the manner in which a database would normally keep it. The first column holds the origin 

year (from 2007 to 2013), the second column is the development year, and the third column has the incremental payments. It’s 

important to note that this data on insurance claims was initially examined using a probability-based distribution. 

First of all,  we need to explore the insurance claims data. Exploring real data can be done using both numerical and graphical 

methods. We consider a variety of graphical methods such as the skewness-kurtosis diagram (or the Cullen and Frey diagram) 

for exploring initial fits of theoretical distributions such as normal, logistic, uniform, exponential, beta, lognormal and Weibull. 

Bootstrapping is applied and also plotted for more accuracy. Cullen and Frey’s graphic, while a decent summary of the 

distribution properties, only compares distributions in the space of (the squared skewness, kurtosis). The "nonparametric 

Kernel density estimation (NKDE)" approach for examining the initial shape of the empirical hazard rate function (HRF), the 

"Quantile-Quantile (Q-Q)" diagram for examining the "normality" of the current data, the "total time on test (TTT)" diagram 

for examining the initial shape of the empirical hazard rate function (HRF), and the "box diagram" for identifying the extreme 

claims are among the other graphical tools. We offer the ACF, which shows how the correlation between any two signal values 

changes as their separation changes. The theoretical ACF does not provide any insight into the frequency content of the 

process; rather, it is a time domain measure of the stochastic process memory. It provides some information about the 

distribution of hills and valleys across the surface with lag= 𝑘 = 1. 

Figure 1 displays the box plot, Cullen and Frey diagram, Q-Q diagram, Scattergram, fitted scattergram, ACF (under lag= 𝑘 =

1), partial ACF (under lag= 𝑘 = 1), TTT diagram and NKDE plot for the original insurance claims data, respectively. Figure 

2 displays the box plot, Cullen and Frey diagram, Q-Q diagram, Scattergram, fitted scattergram, ACF (under lag= 𝑘 = 1), 

partial ACF (under lag= 𝑘 = 1), TTT diagram and NKDE plot for the converted insurance claims data, respectively. 

Based one Figure 1 (top right diagram), no extreme observations are spotted due to the original and the insurance claims data. 

Based one Figure 2 (top right diagram), no extreme observations are spotted due to the converted and the insurance claims 

data. Based one Figure 1 (top middle diagram), the original and the insurance claims data do not follow any of the theoretical 

distributions including normal, logistic, uniform, exponential, beta, lognormal and Weibull. Based one Figure 2 (top middle 

diagram), the converted and the insurance claims data do not follow any of the theoretical distributions including normal, 

logistic, uniform, exponential, beta, lognormal and Weibull. Based one Figure 1 (top left diagram), no extreme observations 

are spotted due to the original and the insurance claims data. Based one Figure 2 (top left diagram), no extreme observations 

are spotted due to the converted and the insurance claims data. Based one Figure 1 (middle left and middle middle diagrams), 

the original and the insurance claims data scattered randomly with no pattern. Based one Figure 2 (middle left and middle 

middle diagrams), the converted and the insurance claims data scattered randomly with no pattern. 

Based one Figure 1 (middle right and bottom left diagrams), the ACF (under lag= 𝑘 = 1) and the partial ACF (under lag=

𝑘 = 1) of the original and the insurance claims dataare exponentially vanishing. Based one Figure 2 (middle right and bottom 

left diagrams), the ACF (under lag= 𝑘 = 1) and the partial ACF (under lag= 𝑘 = 1) of the original and the insurance claims 

dataare exponentially vanishing. Also Figure 1 (middle right and bottom left diagrams), Figure 2 (middle right and bottom left 
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diagrams) shows that the first lag value is statistically significant, whereas the other autocorrelation coefficients and partial 

autocorrelation coefficients for all other lags are not statistically significant.  

Figure 1 (bottom middle plot) indicates that the hazard rate function for the original insurance claims data is monotonically 

increasing. Figure 2 (bottom middle diagram) indicates that the hazard rate function for the converted insurance claims data is 

also monotonically increasing. Figure 1 (bottom right diagram) indicates that the density function for the original insurance 

claims data is bimodal. Figure 1 (bottom right diagram) indicates that the density function for the converted insurance claims 

data is left skewed. 

Figure 3 presents the initial plots for the original (right) and converted (left) insurance claims payments data. It indicates that 

the two data sets have a seasonally pattern. When an additive model can adequately explain a seasonal time series, the time 

series can be seasonally adjusted by estimating the seasonal component and deducting the estimated seasonal component from 

the original time series. The estimate of the seasonal component generated by the "decompose()" function can be used for this. 

So, decomposition process of additive insurance claims time series will be considered. 
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Figure 1: Describing the original insurance claims payments data. 
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Figure 2: Describing the converted insurance claims payments data. 
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Figure 3: Initial plots for the original (right) and converted (left) insurance claims payments data. 

 

 

For the purpose of decomposition process, we present Tables 1, Table 2 and Table 3. Also, Figure 4 and Figure 5. Table 1 lists 

the separated seasonal components for both original and converted insurance claims payments data sets. Table 2 lists the 

separated trend components for both original and converted insurance claims payments data sets. Table 3 lists the separated 

random components for both original and converted insurance claims payments data sets. Figure 4 gives the decomposition 

plots for the original insurance claims payments data. Figure 5 shows the decomposition plots for the converted insurance 

claims payments data. Figure 6 gives the seasonally adjusted plots for the original (right) and converted (left) insurance claims 

payments data. Figure 7 provides the Holt-Winters filtering plots for the original (right) and converted (left) insurance claims 

payments data. 
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Figure 4: Decomposing plots for the original insurance claims payments data. 

 

 
Figure 5: Decomposing plots for the converted insurance claims payments data. 
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Figure 6: Seasonally adjusted plots for the original (right) and converted (left) insurance claims payments data. 

 

 
Figure 7: Holt-Winters filtering plots for the original (right) and converted (left) insurance claims payments data. 
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Figure 8: Holt-Winters forecasting plots for the original (right) and converted 

 (left) insurance claims payments data. 

 

The SES model can be used to generate short-term forecasts for time series that fit an additive model with constant level and 

no seasonality. One method for determining the level at the present time point is the straightforward exponential smoothing 

method. The parameter alpha, which estimates the level at the current time point, controls the smoothing. Alpha’s value ranges 

from 0 to 1. When forecasting future values, alpha values near to 0 indicate that the most recent observations are not given 

much weight. Table 4 lists the predicted values for assessing the SES model. The estimated parameter is �̂� = 0.3542739 for 

original data and �̂� = 0.3117948 for the coverted data. The SSE is 17.9783 for original data and. the SSE is 17.9783 for 

coverted data, based on this, it is better to use the coverted data. Figure 7 is used for assessing the SES model. 

Using the Holt-Winters’ additive algorithm, we can fit a SES predictive model and create forecasts using this method. The 

forecast HoltWinters() function provides you with the forecast for a year, an interval of prediction of 80%, and an interval of 

prediction of 95%. Table 5 lists the predicted values for assessing the SES model for two future years. However, Figure 8 

gives the Holt-Winters forecasting plots for the original (right) and converted (left) insurance claims payments data up to 2022. 

Residual analysis for the converted insurance claims payments data in igure Figure 9. Residual analysis for the converted 

insurance claims payments data in igure Figure10. 

It is also a good idea to see if the forecast errors are regularly distributed with a mean zero and constant variance to ensure that 

the predictive model cannot be improved. We can create a temporal plot of the in-sample forecast errors to determine whether 

the forecast errors have constant variance, for this we presented Figure Figure 10, This graphic demonstrates that the variance 

of the in-sample forecast errors appears to be essentially consistent throughout time. For the original insurance claims payments 

data, since the p-value is 0.621 and the Ljung-Box test statistic is 13.444, there is minimal proof that the in-sample forecast 

errors at lags 1–20 have non–zero autocorrelations. For the converted insurance claims payments data, since the p-value is 

0.565 and the Ljung-Box test statistic is 11.812, there is minimal proof that the in-sample forecast errors at lags 1–20 have 
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non–zero autocorrelations. Table 5 lists 95% confidence intervals (95% CI) for two years. Due to results of Table 5, it is noted 

that �̂�𝑇+ℎ|𝑇|ℎ=1,2,...,8 ≅4794.753 for the orignal insurance claims payments data, this means that 

Q 1(2014) ≅...≅Q 4(2014) ≅Q 1(2015) ≅...≅Q 4(2015),   �̂�𝑇+ℎ|𝑇|ℎ=1,2,...,8 =8.365536 for the converted insurance claims 

payments data, this means that Q 1(2014) ≅...≅Q 4(2014) ≅Q 1(2015) ≅...≅Q 4(2015). This stability in predictive values 

does not always occur. For the converted insurance claims payments data, the corresponding predictive value of 8.365536 is 

4296.414. Hence, �̂�𝑇+ℎ|𝑇|ℎ=1,2,...,8 =4794.753 for the orignal insurance claims payments data > �̂�𝑇+ℎ|𝑇|ℎ=1,2,...,8 =4296.414 

for the converted insurance claims payments data 

Table 1: Seasonal components  

Original time series 

Time Q1 Q2 Q3 Q4 

2007 -556.98438 -95.58854 362.36979 290.20312 

2008 -556.98438 -95.58854 362.36979 290.20312 

2009 -556.98438 -95.58854 362.36979 290.20312 

2010 -556.98438 -95.58854 362.36979 290.20312 

2011 -556.98438 -95.58854 362.36979 290.20312 

2012 -556.98438 -95.58854 362.36979 290.20312 

2013 -556.98438 -95.58854 362.36979 290.20312 

Converted time series 

2007 -0.19093962 -0.06355648 0.04846463 0.20603148 

2008 -0.19093962 -0.06355648 0.04846463 0.20603148 

2009 -0.19093962 -0.06355648 0.04846463 0.20603148 

2010 -0.19093962 -0.06355648 0.04846463 0.20603148 

2011 -0.19093962 -0.06355648 0.04846463 0.20603148 

2012 -0.19093962 -0.06355648 0.04846463 0.20603148 

2013 -0.19093962 -0.06355648 0.04846463 0.20603148 

 

 

Table 2: Trend components 

Original time series Converted time series 

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

2007 - - 2369.500 1734.500 - - 7.702785 7.340393 

2008 1165.250 1210.625 1827.125 2368.875 6.890720 6.759728 7.022281 7.348228 

2009 2685.250 2409.625 1644.875 1520.375 7.673272 7.649870 7.249365 7.108806 

2010 2124.000 2591.750 2827.125 2549.125 7.340264 7.579565 7.778868 7.732095 

2011 2204.875 2438.875 2690.125 2763.000 7.585905 7.668699 7.776024 7.819610 

2012 2755.125 2773.500 2847.125 3357.000 7.823334 7.829183 7.856448 8.042571 

2013 3879.500 4246.250 - - 8.223019 8.299077 - - 
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Table 3: Random components 

Original time series  
Time Q1 Q2 Q3 Q4 

2007 - - -465.86979 -312.70312 

2008 450.73438 -528.03646 -1849.4948 1341.9219 

2009 1573.73438 -36.03646 -827.24479 -854.57812 

2010 -938.01562 1858.83854 742.50521 -893.32812 

2011 -125.89062 -1105.2865 1242.50521 401.79688 

2012 -175.14062 -1357.9115 940.50521 99.79688 

2013 -1002.5156 951.33854 - - 

     

Converted time series 

2007 - - -0.02547863 -0.1010067 

2008 0.26529925 -0.3211460 -1.24179988 0.74004027 

2009 0.73429538 0.14473948 -0.22455975 -0.4520799 

2010 -0.70519325 0.86307185 0.44957088 -0.3645957 

2011 -0.06718412 -0.4838902 0.54071838 0.12193615 

2012 -0.02005775 -0.5802397 0.42595150 -0.0198916 

2013 -0.28275700 0.30186698 - - 
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Table 4: Assessing the SES model 

 Q Original Converted 

2007 Q1 - - 

 Q2 3511.000 8.163656 

 Q3 3406.135 8.136195 

 Q4 3002.215 8.008227 

2008 Q1 2545.125 7.832746 

 Q2 2018.630 7.562212 

 Q3 1511.441 7.192053 

 Q4 1096.430 6.767044 

2009 Q1 2125.443 7.243234 

 Q2 2683.976 7.546733 

 Q3 2540.149 7.604203 

 Q4 2058.284 7.438661 

2010 Q1 1667.774 7.259097 

 Q2 1299.763 7.004995 

 Q3 2382.154 7.433428 

 Q4 2931.224 7.696419 

2011 Q1 2582.185 7.658103 

 Q2 2206.589 7.555110 

 Q3 1863.443 7.419836 

 Q4 2724.880 7.714598 

2012 Q1 2983.543 7.849599 

 Q2 2643.247 7.775622 

 Q3 2174.455 7.591590 

 Q4 2874.339 7.82209 

2013 Q1 3183.500 7.948873 

 Q2 2877.585 7.886654 

 Q3 3665.637 8.089550 

 Q4 3978.235 8.193344 

�̂� 0.3542739 0.3117948 

 (8.475277) (8.365536) 

SSE 17.9783 15.09381 
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Figure  9: Residual analysis for the original insurance claims payments data. 
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Figure  10: Residual analysis for the converted insurance claims payments data. 
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Figure  11: Residual plots for the original (right) and converted (left) insurance claims payments data. 

 

4.  Concluding remarks 

Short-term forecasts can be made using simple exponential smoothing if your time series data can be successfully 

forecasted by an additive model with constant level and no seasonality. This method is suitable for forecasting data 

without a clear seasonal pattern or trend. The simple single exponential smoothing approach is one way to figure out 

the level at the current moment. For insurance firms to prevent significant losses brought on by potential future claims, 

the future values of predicted claims are crucial. For predicting various claims payment applications, time series are 

crucial. The future values of expected claims are essential in order for insurance companies to avoid major losses 

caused by potential future claims. For left skewed insurance claims, we consider the single exponential smoothing 

model.  The usefulness of the proposed paradigm is illustrated using a real-world application iunder the Holt-Winters’ 

additive algorithm. The optimum parameter is also picked arbitrarily. The usefulness of the proposed paradigm is 

shown using a real-world application. The Holt-Winters’ additive algorithm is recommended for short term future 

perception in insurance and actuarial sciences. 
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